
The RASSIRIS project
Simulator of Assiris jobs on Felix-C computers

Alexandru Dan Corlan, MD, PhD

alexandru@corlan.net

December 1, 2023
doi: 10.5281/zenodo.10245244

Contents

1 Introduction 3
1.1 The Felix culture . 3
1.2 Importance of the simulator project 4
1.3 Aim of the project, what we try to preserve 4
1.4 Why learn Assiris and use the Felix simulator 5
1.5 History of Assiris and Felix-C computers 6

2 About this project 8
2.1 History of this project . 8
2.2 Roadmap . 8

3 Known differences between systems 10
3.1 Differences between Felix and Sigma computers 11
3.2 Differences between RASSIRIS simulators and the Felix-C-256 12
3.3 Comparison of RASSIRIS simulators with SimH and QEMU . 13

4 The input language accepted by RASIRRIS 13
4.1 Types of input lines (cards) 14
4.2 General structure of the input file 15
4.3 Machine code instructions . 15

1

4.3.1 Address calculation . 19
4.4 Examples of addressing modes 19
4.5 The HOST instruction . 22

5 The Felix-CC16 job simulator 22
5.1 Outline of the v1.0 version . 24

6 Specific features and peculiarities of each release 25
6.1 v0.2.0, CC16 only . 25

6.1.1 readme/installation . 26
6.1.2 The help page . 26
6.1.3 Tests . 28
6.1.4 addrtest02.asr . 28
6.1.5 addrtest.asr . 30
6.1.6 datatest01.asr . 31
6.1.7 hello02.asr . 32

6.2 v0.1.1, CC16 only . 33
6.2.1 How to install . 33
6.2.2 The output of the ”. LIST ’HELP’ ” control card in

version 0.1.1 . 34
6.2.3 Hello world . 35
6.2.4 Bogomips . 36

References 37

2

1 Introduction

The Felix-C series, the prototype of which was Felix-C 256, were mainframes
produced in Romania that were clones of the french IRIS-50 computers, that
were, at their turn, licenced as modified, not binary compatible, designs from
SGS Sigma-7 and Sigma-9 computers. See section 1.5 for details.

Felix-C were designed in the late 1960-ies and early 1970-ies and pro-
duced in Romania until 1980. They were 32 bit computers, with paged
memory management and 64 bit arithmetic double precision floating point
in hardware. A somewhat comparable design in the microprocessor world,
from a conceptual point of view, is the Motorola 68020 that appeared in 1984.
Of course, the Felix/Iris/Sigma were using earlier, TTL low scale integration
(chips with individual gates and bistables) on hundreds of boards in large
racks, core magnetic memory and punched card readers.

Besides the C256, the prototype, 256Kb memory model, a reduced one,
C32, was also built, which had only up to 64Kb of memory and was destinated
for process control. Larger ones, C512 and C1024 were later introduced, with
a slightly extended instruction set and up to 1Mb of memory.

The clock was about 4MHz, but it was not a pipelined architecture and
the execution of most instructions took around 3 microseconds, with some
64 bit arithmetical ones taking up to 55 microseconds [7].

Almost all traces of the Felixes dissapeared and it is not possible to find
a non-working relic, much less a working one, and, as of november 2023, we
could find no binary software. However, a number of books on the hardware,
operating system (Siris-2 and Siris-3) with the SGF file system, Assiris as-
sembler with system call macros, the Socrates database, Fortran, Cobol, the
Magiris macroprocessor, can still be found.

1.1 The Felix culture

An important effect of the Felix computers was the technical culture that
developed around this specific architecture, and ASSIRIS in particular. The
Felices were almost the sole computers available in Romania for a decade
or more, and the sole system that was taught in schools and universities.
Even though relatively few people ran relatively few jobs on the really few
computers that were actually functioning, this architecture was synonimous
with computing for over a generation.

Six years after felices stoped being produced, in 1986, while various

3

mini and microcomputers were beginning to appear, the national comput-
ing olympics for highschool pupils still required Assiris as a skill (https:
//vang.hq.ro/2023/11/27/it-in-romania-inainte-de-89/).

1.2 Importance of the simulator project

The primary use of this simulator is as a museum piece. What it aims
to preserve is the experience of running some assiris jobs on the Felix-C
computers, currently not the structure of the computer itself. However, the
structure of similar computers, the SDS Sigma-7 and Sigma-9 is preserved
in SimH and that of relatively similar computers, the S/360 from IBM, is
preserved in the Hercules simulator—and, of course, binary compatible IBM
mainframes are still in broad use.

In other terms, what we aim to reproduce and preserve is not necessarily
the Felix-C computer in detail, per se, but the substrate of the dominant
Romanian technical culture of computer programming in the 1970ies and
1980ies, which was focused on developing and running user-space jobs on
these computers, and obtaining printed outputs.

1.3 Aim of the project, what we try to preserve

Using and programming computers, 50 years ago, was different in some ways
from what we do today. We are not referring only to the hardware (tapes,
frontal pannel, card readers and punchers, lack of interractive displays) but
to the way software was conceived.

The assembler was not supposed to be only the target of compilers or
an unusual language in which you incoded some small, performance critical,
part of your program, or a driver, like today.

Assiris was supposed to be used mostly by humans, and was the main
method of controlling the computer, the equivalent of the shell (such as
bash) in unices like Linux, today. There was a plethora of system macros
that performed various common tasks, such as copying or printing files, or
starting other programs, that were directly integrated in the assembler.

Programs had a segmented structure, because of the specifics of address-
ing. You had local address references, for calls, jumps and variables, that
were inside segments up to 64K. There were also far calls and accesses, that
went through a kernel trap and were invoked with macros. 64Kbytes meant
a lot of memory.

4

https://vang.hq.ro/2023/11/27/it-in-romania-inainte-de-89/
https://vang.hq.ro/2023/11/27/it-in-romania-inainte-de-89/

This segmented structure made part of programming and thinking. High
level languages, Fortran and Cobol, were used for very specialised purposes
and also had to implement the segmented structure of the program and in-
memory data. The segments actually provided an early modularisation and
information hiding feature.

This segmentation was also found in the S/360 and probably many other
systems of the time and maybe it can be traced to the organisation of symbol
visibility in C program files, although the 64K limit for a an object file image
has long disappeared.

We are today used to flat and huge address spaces. However, as our
computers and clusters have more and more processors of all kinds, it is
possible that segmented programming reemerges somehow, under different
names—as in the gpu “kernels”.

It this specific experience of the assembler-shell, especially in batch com-
puting were one job consisted of all the program and all the data as one input
and that deterministically produced one output, that is rare today, at least
in the personal computer world.

Another feature was that you could know your computer, hardware and
software, system and standard applications with a relatively limited effort,
perhaps a couple years of training and experience. We don’t have this any-
more today.

Also, the assembly language was very orthogonal and simple. This was
probably, first, because decoding circuitry was expensive, but it helps clarity
and predictability a lot, after you overcome the peculiarity of the syntax.
The syntax is difficult because small numbers in different places mean quite
different things than other numbers in the same places. Conditions for jumps,
for example, come as numbers that usually denote registers but in this case
do not mean registers–but conditions.

The mapping of the registers in the first 64 bytes of memory allows simple
techniques that are no more available in modern processors, such as iterating
through the registers, but contribute to the bewilderment of the unaware
beginner.

1.4 Why learn Assiris and use the Felix simulator

Frankly, there are very few important reasons to try Assiris, other than
nostalgia or curiosity.

By learning Assiris and running a few jobs you may:

5

1. experience the relatively unusual syntax and addressing modes of the
Felix/Iris/Sigma processors, in which the registers were the first bytes
of memory and there were various indirect and indexed modes that
also used the memory/register overlap–although you could do that with
many SimH machines almost as well;

2. relive a time when the computer, its operating system, operating in-
structions, languages could be described in a book of 1000 pages that
contained everything, that was all you could rely on that–although
there are other ways to relive that with the zx spectrum or the amiga
or the archimedes, not to speak about the oberon;

3. experience the design of computing jobfiles where all the data and pro-
grames were combined together; this is somewhat enlightening with
respect to reproducibility problems we encounter even today–although
there are other jobfile languages and mechanisms that are more widely
available and better documented and tested;

4. if you were learning computer science in Romania (and possibly in other
countries) in the 70-ies and 80-ies but, frustratingly, did not have the
opportunity to actually run programs on felices, this can really help
with finally healing that frustration (except only assiris-wise; cobol-68
and fortran-iv fans must wait a little more—little, here, could mean
decades);

5. compare running jobs on the felices and on z80/8080/8086/68k or
on other computers and assess whether the decision to not continue
the iris80/ felix/ sigma lines of computers, by integrating them into
microprocessors–thus allowing the continuation of the technical culture
that developed around them–was a good, or a bad decision;

6. have fun (sort of).

1.5 History of Assiris and Felix-C computers

The Felix-C-256 computer was a mainframe computer produced in Romania
in the 1970ies (https://ro.wikipedia.org/wiki/Felix_C). It was more
or less a copy of the IRIS-50/IRIS-80 computers produced in France by CII.
It was produced by the ’Fabrica de Calculatoare’ near Bucharest. Both the

6

https://ro.wikipedia.org/wiki/Felix_C

computer and the production technology were licenced from CII. It ran the
SIRIS-2 operating system that ran also on the IRIS.

At their turn the IRISes were produced under licence from SDS (Scientific
Data Systems, later XDS after acquisition by Xerox) being similar to the SDS
Sigma-7 and Sigma-9 computers. There is a SIMH simulator of the Sigma
computers, with an operating system (CP-V) in binary form that works like
the original.

However, the IRISes and thus the Felixes, are not binary compatible with
the sigmas, there are substantial difference detailed in subsection 3.1.

The Felix was the only computer available in Romania in the seventies and
early eighties. Romania was a socialist country from the Warsaw treaty and
there were no private enterprises. The Felixes were to be found in state enter-
prises and institutions, including ’county computation centers’ and could not
be purchesed independently. Their unreability was legendary. However, they
allowed the introduction of computer programming and education curricula
relying on a specific, practical, existing and theoretically available computer
system. One had something to actually talk about. A whole generation of
computer engineers and programmers was introduced into the field on the
Felix Fortran, Cobol and Assiris, as well as Siris control language, starting
from high school. Most of those who wrote programs on paper and discussed
their functioning never had the opportunity to see a Felix in real life, much
less to punch their jobs on cards and actually submit them for execution.
For some, this created a lingering frustration.

While felices remained in operation, or at least on inventories, until the
end of the eighties, their place was overtaken in the romanian enterprises
by PDP clones, mostly with RSX and RT-11, then by 8080 and Z80 clones
running CP/M or ZX spectrum operating systems or the probably locally
developed SFDX, which was inspired by RSX, but for the Z80. Later, 8086
PC-compatible clones overtook the landscape. A hobbist community also
developed around home-made ZX Spectrum clones, CP/M and also CP/M-
68k. Few unix installations were experimented here and there, until Linux
appeared in 1992 (Romania joined back the free world in december 1989).

Fabrica de Calculatoare was caught by the 1989 revolution while trying to
clone a VAX. It survived for another couple of years, than dissapeared. The
whole ’Pipera platform’ (industrial campus) were it was found, together with
other computing machinery factories and institutes was transformed and is
today a technological campus for (mostly international) software companies.

Of the Felixes, almost nothing remained–except the people who had been

7

initiated in computing and their students and a few programming books and
manuals in anticariats.

We could not find any piece of software, in source or binary other than a
few books that are listed at the bibliography. There are Corals and Indepen-
dents still in operation in some informal museums, but no Felices. Almost
nothing was to be found about the IRISes online either.

2 About this project

The lack of binary system software, or any software, to test a simulator makes
it impossible to produce a hardware simulator in the stile of SimH.

The purpose of this project is to produce a simulator of running assembly
(Assiris) jobs on a bare machine that is as similar as practically possible to
the Felix-C-256. For this purpose, we do not reproduce the system portions
of the Felix, but only the user-space.

2.1 History of this project

It started on November 3, 2023, on github (https://github.com/dancorl/
felix-assiris/commits/main/README.md) as a hobby project. Some parts
of this document appeared as the first readme version. The first usable ver-
sion of the simulator, 0.1.0., was released november 11, 2023. Version 0.1.1.
can be found also on zenodo: https://zenodo.org/records/10117525.
The official page of the project is at http://dan.corlan.net/software/

emulators/felix-assiris/.
The first version of this document was released at December 1, 2023,

together with release v0.2.0 of the simulator.

2.2 Roadmap

Possible developments, and their names, are immagined below. There is a
coding scheme, implementations starting with ’C’, of which there should be
only one (C256) with options, would represent attempts to reproduce the
exact Felix machine. Implementations with ’CC’ followed by the number of
bits in the address field, are not necessarily exact implementations of C256,
but approximations inferred from books. However, they try to remain as
close as possible to the felix. Implementations with ’CX’ followed by the

8

https://github.com/dancorl/felix-assiris/commits/main/README.md
https://github.com/dancorl/felix-assiris/commits/main/README.md
https://zenodo.org/records/10117525
http://dan.corlan.net/software/emulators/felix-assiris/
http://dan.corlan.net/software/emulators/felix-assiris/

number of bits in the address field would be imaginary eXtensions of the
Felix, in the style of MVS/Hercules/380 (https://mvs380.sourceforge.net/).

The only implementation being developed now is CC16, for the purpose
of getting the instructions and addresing modes right.

C256 –would attempt to simulate exactly the felix C256 with different mem-
ory cofigurations/availability; would aim for binary and even signal
compatibility; possible only if we somehow recover the operating sys-
tem and other binary files; these seem very unlikely at this time. One
approach could be to transform a clone of the Sigma SimH simula-
tor along the lines of the differences found in the literature. A non-
compatible sigma architecture would result, that is closer somehow to
the Felices, but for which no software is available and that is prob-
ably incompatible even with the felix because we don’t know all the
differences; however, it would be a complete computer simulation.

CC16 is currently developed and described below; it aims to provide a min-
imal environment in which small ASSIRIS jobs can be run. It is a
simplified, single 64K code segment job, with a minimal implementa-
tion of the HOST instruction, basically stdin, stdout; instructions are
otherwise attempted implementations of the ones in the felix, possibly
with the exception of some system and character chain instructions; a
minimum set of the directives and control cards are emulated, to make
running stdin/stdout jobs in 64K possible. This is the fastest achiev-
able, the simplest and probably sufficient for almost any demonstration
purpose as well as for testing the instructions. Most examples that are
found in existing manuals could be run in this system, once completed.
This configuration is the first objective of this project and would am-
mount to some preservation of the historical experience of running Fe-
lix/ASSIRIS jobs, while we learn how the system works. The limitation
to 64K is not restrictive, as most Felix installation actually had 64K of
memory or less—core memory was rare and very expensive—of which
some was used by the operating system. The upgrade of this simulator
to another configuration may involve some redesign of the simulator.

CC24 would attempt the implementation of the segmented architecture of
SIRIS-3 jobs, including some monitor functions–such as CALLs into
other segments, possibly some traps and user interrupts. Except for

9

the HOST instruction, all instructions would still be from the Felix-C-
256 or Felix-C-1024 set. The host instruction would be an extensive
implementation, possibly with access to external files, at least sequen-
tial, and at least a librarian of jobs and sources and other features of the
SIRIS operating system, for example some SGF calls. The maximum
memory that can be handled is available. Multiprocessing, through
time-sharing, as on the original processor could be available. Refer-
ences [2, 6] provide a sufficiently detailed description of the internal
aspects of the operating system SIRIS to allow its approximate repro-
duction in the simulator. The CC24 machine would contain an as close
approximation of the operating system as possible, however the OS
would not be written in felix machine code, but run in the simula-
tor. The compilers for (segmented) FORTRAN and COBOL and the
accepted language, including the peculiarities of interacting with the
operating system are also described in other books, in sufficient detail
to allow their reimplementation. This is a feasible, although larger,
project with the available documentation.

CX32 A possible implementation of an imaginary upgrade of the Felix. New
instructions and instruction formats would be defined, implementing a
flat 4G memory model; they would include at least 32 bit immediate
load/store and 32 bit jump. The segmented approach is optional, as the
job can control 4Gb of RAM in one image. Could include: true multi-
core multiprogramming with interprocess communication primitives;
extensive implementation of files and libraries; networking with internet
access, for example cards to declare web servers and to access files and
other resources across the web (via the Ada Web Server that would be
bound with the simulator); primitives to access multiple file formats
and databases, including modern ones such as sqlite or hdf. Such a
system would not be useful even with as a historical preservation, but
could offer an insight into a contrafactual history narative in which the
Sigma/Felix line would have continued until today.

3 Known differences between systems

This section compares the RASSIRIS emulator with other emulators, with
the Felix (as far as known) and with other computers.

10

The RASSIRIS is developed on an Inte/AMD64 processor, in Linux. It
has not been tested on other preocessors.

3.1 Differences between Felix and Sigma computers

The Felix has a single, 32 bit instruction format.
The single instruction format has mostly the same fields, but not in the

same order. In the Sigmas the order is: I,F,B,Q,D. In the IRISes and Felix it
is I,B,Q,X,F,D. The Q field is named ’X’ in the sigma documentation (http:
//www.bitsavers.org/pdf/sds/sigma/sigma9/901733C-1_Sigma9_RefMan_

Apr74.pdf), but here we use Felix terminology. The X field is a single bit
that denotes the “indexed” addressing mode. In this mode–which, combined
with the I (indirect) mode makes for addressing mode combinations–the Q
register is added to the address formed by the contents of the B register and
the D displacement, or to the address found in the memory word pointed
to by (B)+D. The superposition between B and Q registers is also possibly
different.

The opcodes F are also different, although the instructions are otherwise
similar. Generally the opcodes perform the same functions, but the usual
mnemonics are different as are the codes that correspond to the same actual
instruction.

Otherwise, the addressing modes, the organisation of the memory and
memory management seem to be the same, and not very different from the
IBM/S360. Most larger programs are segmented, with a ‘short’ reference
through the D field of the instruction and a longer reference using the (B)+D
addressing scheme.

The D field is 16 bits in the Felices, thus segments have maximum 64K,
and 17 bits in the Sigmas (because they don’t have the indexed addressing
flag), apparently with some schemes to extend that to up to 20 bits using
alignment assumptions. Some, different, such assumptions may operate also
in the Felices although they are still obscure to me. The IA (instruction
address) field in the PSW in the Felix is 18 bits (thus the 256 in the Felix-
C256, as 256K can be accessed with 18 bits), but the last two bits are always
0, as instructions are word-aligned. This schema of course would not work
for data fields of instructions that deal with bytes or half words.

Otherwise, in the segmented view of the programs, the B (base) registers
are usually used for the base of a segment, D for actual addresses in the
segment and, if X is set, in the felices (but not the sigmas), for an offset in

11

http://www.bitsavers.org/pdf/sds/sigma/sigma9/901733C-1_Sigma9_RefMan_Apr74.pdf
http://www.bitsavers.org/pdf/sds/sigma/sigma9/901733C-1_Sigma9_RefMan_Apr74.pdf
http://www.bitsavers.org/pdf/sds/sigma/sigma9/901733C-1_Sigma9_RefMan_Apr74.pdf

a table inside the segment, a table that is pointed to by D.
The indirect addressing mode in the felices also have a feature that I find

bizarre, but probably do not understand exactly. It means that the computed
address (say (B)+D) is replaced by the value found at that address. However,
if that value is also ‘indirect’, that is it has the first bit set, another indirection
is computed, taking that value into account and leading to a new indirection.
This step is repeated up to 5 (five, exactly) times and then stops—there is
specific circuitry in the computer that performs this stop. What is not clear
is what happens if the final intended value is in fact a negative number that
has bit 31 set. Very difficult bugs would seem to occur this way. I could
not find such behaviour in the Sigmas and the first version of the simulator
perfoms exactly one indirection, as modern processors.

The dot, ’.’ is used on control cards in SIRIS rather than the exclamation
mark, ’ !’, that is used in CP-V.

3.2 Differences between RASSIRIS simulators and the
Felix-C-256

We list below the differences between CC and CX simulated machines on one
side and the Felix-C-256 and the corresponding C256 simulated machine, if
it will ever exist, on the other side.

1. Some system operations, such as channel I/O are not implemented; see
chapters of individual versions for what is implemented and what not.

2. The float is IEEE instead of the felix-specific one; all operations are
normalised (as performed by the Intel/AMD64 processors).

3. in CC16, only a single segment, of 64K, with ‘absolute’ addressing,
that is having B0 (which is always 0) as the default base register, is
implemented.

4. Indirect addressing on the Felix would perform up to five indirections
based on the value found at the target of each previous indirection; we
do not implement this in the CC and CX, there is always one exact
indirrection.

12

3.3 Comparison of RASSIRIS simulators with SimH
and QEMU

The SimH is an outstanding project of system preservation, as is QEMU—
which in general deals with other, more modern processors. However, in
QEMU, unlike in SIMH, one can run binaries on different processors (with
different instruction set architectures) but system calls are to the Linux ABI,
not to the old operating systems.

It you want to experience the old operating systems, you have run a
machine, perhaps access it through some terminal and run commands that
are executed by a copy of the operating system, and develop software using
the tools that were availble in the simulated system, exactly as they were
(supposing you still have the binaries of such tools).

Rassiris is different, and somewhere in the middle. You develop programs
with tools on a moderm machine, for example emacs in linux. The assembler
runs on the modern machine, and the objects that one used to interract with
the Felix, such as tapes, printouts or card decks, are files on the modern
machine. However, from inside the program you develop, you see everything
as on the old machine, including some operating system calls, although more
modern ones (semihosting API) are also available and the old are in fact
mapped into the new. The operating system is simulated as is the assembler
and the processor.

This approach was taken because we have documentation of the old sys-
tem and processors but the binaries of the operating system, the assembler
etc. It is also more confortable than SIMH—but, of course, fails to preserve
some dimensions.

4 The input language accepted by RASIR-

RIS

This section introduces the Assiris language version accepted by the simu-
lator, including instructions, macros, directives and control cards, as well as
the machine code that is generated and the effects of its execution.

The simulator works as a Linux command that receives an input file–the
format of which is specified here–and produces and output file. CC16 V1
will only read standard input and produce output. Other, more advanced
versions, may deal with other files.

13

The input consists of lines, that for historical reasons are also called cards.
Unlike in the Felix, which used EBCDIC, the input and output lines are

encoded in Ascii-8.
There is a scanned booklet with most instructions, directives and control

cards of the original Felix at [5], that was used as inspiration for the ones
below.

4.1 Types of input lines (cards)

The first character in each line determines what type of line it is.
The length of a line can be at most 80 characters, and ends with an Ascii

’LF’ (10) character. The end of line character is not considered to be part
of the line. The input line is treated as if it is padded with spaces until the
80th column.

Continuation lines are not currently supported.
Lines before the first .JOB card, between the .EOJ card and before the

next JOB card, or after the last .EOJ card are ignored—considered com-
ments.

The following types of lines, by character, may be in the input file, inside
JOBs (as above), by the character they start with:

’.’ Control cards, that start with a ’.’ are general instructions to the
simulator–they match general instructions to the operating system in
the Felices, such as JOB, EOJ, COMPILE, LINK, RUN;

’*’ Comments start with ’*’ and are ignored.

’#,%’ these lines are ignored like comment lines; ‘%’ lines will introduce li-
brarian control cards in the future.

A-Z a label of an Assiris instruction starts this line

’ ’ a space may introduce an empty line, which is ignored, or an Assiris
instruction, macro or directive without a label;

Instructions are lines that directly translate into machine instructions,
one to one, in the assembler output.

Macros are expressions that are translated into one or more machine code
instructions.

14

Directives are lines directed to the assembler, that may generate binary
output or not, or have other effects, but that do not correspond to machine
instructions–such as declaring labels (EQU) or storing data (DATA).

4.2 General structure of the input file

The input file is divided in jobs. Each job starts with a .JOB card and ends
with an .EOJ card.

Inside a .JOB, there can be one or more sections of ‘Assiris text’ that start
with a .COMPILE card and end with an END card (which is a directive, not
a control card). Typically, the END card is followed by .LINK and .RUN
cards.

4.3 Machine code instructions

Machine code instructions are always 32 bits in length. They all have the
same fixed format, described in table 4.

In the Felix literature, the R field is also called Q or X.
The Felix has, in fact, 17 registers. The 7 B registers, B1–B7 are the same

with the last 7 general registers, R9–R15 (B+8). However, the B0 register
is not the general R8 register, but a special register that is always 0. Thus,
when you load a value in the R11 register, it is loaded also in the B3 register,
it is the same register.

The same R registers are also used for single precision floating point
operations.

Pairs of R registers, where the first register is even, that is R0,R1, or
R10,R11, can be used as 64-bit registers, either for integer operations or
double precision floating point operations.

The memory available to the job (user-space memory) is at addresses
starting from 0 to 64K for CC16 and up to/ higher addresses in other con-
figurations. Addresses are at the byte level, but instructions must be aligned
at 4 bytes.

The first 64 addresses are, in fact, the registers. Thus, when the processor
reads from these addresses, or writes to them, it reads/writes in the registers.

All instructions are register-to-memory (store) or memory-to-register (load,
add etc). In order to perform register-to-register operations, you must use
the first 64 addresses.

15

Table 1: Overall (approximative) BNF syntax of the jobfile.

<jobfile> ::= { [<comment>] <job> }* [<comment>]

<comment> ::= { <space-line> | <comment-line> }*

<comment-line> ::= { <comment-char> <char> * <end-of-card> }

<alpha-char> ::= ’A’ .. ’Z’ | ’a’ .. ’z’

<num-char> ::= ’0’ .. ’9’

<hex-digit> ::= ’0’ .. ’9’ | ’A’ .. ’F’

<octal-digit> ::= ’0’ .. ’7’

<binary-digit> ::= ’0’ | ’1’

<alphanum-char> ::= <alpha-char> | <num-char>

<ident-char> ::= ’%’ | <alphanum-char>

<natural> ::= <num-char>*

<identifier> ::= <alpha-char> <ident-char>*

<comment-char> ::= ’*’ | ’#’ | ’(’ | ’)’ | ’[’ | ’]’ | ’;’

<ctrl-char> ::= ’.’

<sp> ::= { ’ ’ | ’\t’ } +

<end-of-card> ::= ’\n’

<job> ::= <job-card> [<conf-card>*] [<compile-block>*]

[<link-card>] [<run-block>*] <eoj-card>

<job-card> ::= <ctrl-char> [<sp>] JOB <jobname>{’,’ <jobarg>} *

<jobname> ::= <identifier>

<jobarg> ::= ’AN:’ <identifier> | -- account name

’PN:’ <identifier> -- programmer/author name

<conf-card> ::= <ctrl-char> [<sp>] CONF <confarg>{’,’ <confarg>} *

<confarg> ::= ’MACHINE:’ <identifier> | -- machine, default: FELIX%CC16

’VERB:’ <natural> | -- verbosity level, default: 0

’SPEED:’ { O[RIGINAL] | N[ATIVE] } -- Original=Felix-c-256 timing,

-- Native=host speed

<compile-block> ::= <compile-card> <assiris-text> <end-card> -- see next table

<eoj-card> ::= <ctrl-char> [<sp>] EOJ

16

Table 2: Overall (approximative) BNF syntax of the jobfile, the ASSIRIS
text block

<compile-card> ::= <ctrl-char> [<sp>] COMPILE ASSIRIS

<end-card> ::= <sp> END [<identifier>]

<assiris-text> ::= <assiris-expression> *

<assiris-expression ::= <comment-line> | <instruction> | <directive>

<instruction> ::= [<label>]<sp><mnemonic>[,<reg>][<sp><insarg>][<sp><comment>]

<label> ::= <identifiers>

<mnemonic> ::= AD4i | AD4 | ...

<reg> ::= <natural> -- range 0..15

<insarg> ::= [<indirect>][<base> ’.’][<argexpr>][’,’<index>]

<indirect> ::= ’*’

<base> ::= ’B’<octal-digit>

<argexpr> ::= <label> | <half-constant>

<half-constant> ::= <decimal-hc>|<octal-hc>|<binary-hc>|<hex-hc>|<char-hc>

<decimal-hc> ::= [’+’|’-’] <natural>+

<octal-hc> ::= [’’’ ’O’ ’’’]<octal-digit>+

<binary-hc> ::= [’’’ ’B’ ’’’]<binary-digit>+

<hex-hc> ::= [’’’ ’X’ ’’’]<binary-digit>+

<string> ::= ’’’ <char> * ’’’

<char-hc> ::= [’’’ ’C’ ’’’]<char>[<char>]

<index> ::= <natural> -- range 0..15

<directive> ::= <org-dir>|<text-dir>|<textc-dir>|<data-dir>|

<res-dir>|<csect-dir>|<align-dir>|<dsect-dir>|

<org-dir> ::= [<label>]<space> ORG <space><half-constant>

<csect-dir> ::= [<label>]<space> CSECT <space>[’P’|’C’|’D’]

<dsect-dir> ::= [<label>]<space> DSECT

<text-dir> ::= [<label>]<space> TEXT <space> <string>

<textc-dir> ::= [<label>]<space> TEXTC <space> <string>

<data-dir> ::= [<label>]<space> DATA,<size>,<align> <constant>{,<constant>}*

<constant> ::= <half-constant> | ’FS’<float-c> | ’FD’<float-c>

<float-c> ::= [’+’|’-’]<digit>* ’.’ <digit>* ’E’ [’+’|’-’]<digit>*

<size> ::= <natural>

<align> ::= <natural>

<align-dir> ::= [<label>]<space> BOUND <space> <natural>

<res-dir> ::= [<label>]<space> RES <space> <natural>

17

Table 3: Overall (approximative) BNF syntax of the jobfile, the
link/run/dataset block

<link-card> ::= <ctrl-char> [<sp>] LINK

<run-block> ::= <run-card> [<print-card> | <test-card>] *

[<dataset-card> <data-card>* <end-ds-card>]

[<print-card> | <test-card>] * -- not yet defined

<run-card> ::= ’.’ [<space>] RUN [<runarg>{’,’ <runarg>}*]

<runarg> ::= <ins-arg>

<ins-arg> ::= { KINS | MINS | GINS } ’:’ <natural>

<print-card> ::= ’.’ [<space>] PRINT <space> <p-option>{’,’<p-option>}*

<p-option> ::= ’HELP’ | ’ABOUT’ | ’SYMS’ | ’LINKS’ | ’DUMP’ | MSG:’ ... ’

<dataset-card> ::= <ctrl-char> [<sp>] DATASET

<data-card> ::= <char>*

<end-ds-card> ::= <ctrl-char> [<sp>] ENDDS

Table 4: The machine code instruction format

Field From To Nr. Meaning

bit bit bits.

I 0 0 1 Indirect addressing

B 1 3 3 Base register, B0..B7

R 4 7 4 General register, R0..R15

X 8 8 1 Indexed addressing

F 9 15 7 Operation code (function)

D 16 31 16 Displacement

18

Table 5: Address calculation in the Felix-CC16 machine

I X Syntax Address Comment

0 0 MNE,R B.D reg(B+8) + D

MNE,R D D B assumed 0, reg(8) = B0 = 0

1 0 MNE,R *B.D (reg(B+8) + D) object pointed to by addressed object

1 0 MNE,R *D (D) the absolute address contains a pointer

0 1 MNE[,0] B.D,R reg(B+8)+D+reg(R) R0 will be the other operand

0 1 MNE[,0] D,R D+reg(R) R0 will be the other operand

1 1 MNE[,0] *B.D,R (reg(B+8)+D)+reg(R) R0 will be the other operand

1 1 MNE[,0] *D,R (D)+reg(R) R0 will be the other operand

4.3.1 Address calculation

Most instructions consist of calculating an address, that we call A, and then
performing an operation between two operands: a register R and the value
found in memory at that address.

Some instructions, the ones with mnemonics ending in ‘I’, or immediate,
do not perform on the value found at address A, but on the address A itself.

The address calculation is as explained in table 5. In indirect addressing
(I=1), the Felix, if it finds a bit pattern that also represents indirect ad-
dressing (in a way that is still misterious to this author, but it may involve
the most significant bit being set), it will indirect again to the new pointer,
than again, and again, up to 5 (five) times. As we consider this to be very
difficult to control, we only implement the first indirection, as in more recent
computers. An option in the C256 machine, if ever implemented, should
reproduce the original repeated indirections (assuming they were ever used
in available machine code).

4.4 Examples of addressing modes

ORG X’0504’

ALPHA DATA,4,4 X’100’,X’200’,X’300’,X’400’

19

ORG X’0100’

OMEGA DATA,4,4 X’0999’,X’0AAA,X’0BBB’

...

L1 LD4I,3 ALPHA

L2 LD4I,3 *ALPHA

L3 LD4,3 ALPHA

L4 LD4,3 *ALPHA

L5 LD4I,2 8

L6 LD4 ALPHA,2

L7 LD4 *ALPHA,2

L8 LD4I *ALPHA,2

L8S ST4,0 12

L9 LD4,8 12

L10 LD4,8 *12

ORG is a directives that establishes that the following code-generating
instructions will start at addres hex(adecimal) 0504 (decimal 1284), which
is called the CAA (current assembly address). In CC16, this is an absolute
address.

ALPHA is a label at the CAA, that is hex 0504.
DATA,4,4 means that the argument constants will be stored in succesive

locations, each of 4 bytes, aligned at 4 bytes. As the CAA, 0504, is already
aligned at 4 bytes, it starts at this address. At 0504 the hex value 100 will
be stored, that is hex 00000100. The data will be stored LSB first, that is
00, 01, 00, 00. At 0508, 00000200 will be stored, at 050C: 00000300, and at
0510: 00000400. The same applied to OMEGA.

Instruction L1 loads the R3 register with the address ALPHA, that is hex
0504. Instruction L1 is equivalent to:

L1 LD4I,3 B0.ALPHA

The address is the sum of B0—which is always 0 and the value of symbol
ALPHA which is 0504.

Because it is an immediate instruction (notice the ‘I’), the address itself
is loaded into the register.

Instruction L2 is indirect. The address ALPHA (meaning B0.ALPHA) is
used as a pointer to determine the effective address used in the computation.

20

At ALPHA, we find X’0100’ thus the effective address is 0100 hex. As the
load is immediate, this address is loaded into R3 (on four bytes).

Instruction L3 is direct, but not immediate. The effective address is
ALPHA as in instruction L1. However, the value that is loaded is that found
at the effective address, that is X’0100’. Thus, L3 is equivallent to L2.

Instruction L4 is indirect and not immediate. The effective address is
computed by adding ALPHA to B0 (which is 0) resulting ALPHA, then,
because of the indirect mode, taking the value that is found, in memory, at
address ALPHA, that is X’0100’. This X’0100’ is the effective address. The
L4 instruction loads the value found at X’0100’ into R3, that is the value
X’0999’.

L5 immediately loads 8 into R2.
L6 is indexed, but not indirect, and not immediate, addressing. The

effective address is computed as the contents of B0 (that is 0) + ALPHA +
the contents of R2, that is 8 from L5. Thus the effective address is X’0504’
+ 8 = X’050C’. Thus, the value loaded in R0 is the value at address X’050C’
that is X’0300’. Being an indexed instruction, it operates with R0.

L7 is like L6, but also indirect. The effective addres is computed by taking
the value that is stored at B0+ALPHA, that is at ALPHA, where the value
found is X’0100’. Now, to this value we add the value in register R2 (indexed
addressing), giving X’0108’ which is the effective address. The value at this
address, which is X’0BBB’ is loaded into R0.

L8 proceeds like L7, except that, being an ‘immediate’ instruction, it
loads into R0 the effective address itself, that is X’0108’, not the value found
there.

L8S stores register 0 into the location at address 12. However, 12 is in the
’registers’ region and means the address of register R3 into which the value
from R0 (X’0108’) is stored.

L9 loads into register 8 (which is NOT B0, it is non-base register), the
value found at absolute address 12, that is R3. At that address, the value
X’0108’ is found, which was stored by L8S.

L10 proceeds like L9, but the effective address is not the address 12, of the
register R3, but the value found there (due to the indirect addressing mode),
that is X’0108’. The value loaded into R8 is thus that found at X’0108’, that
is X’0BBB’.

21

4.5 The HOST instruction

The HOST instruction is added in the language of our simulator. It was not
prezent in the original Felix. It supplants the role of various traps, mostly
for I/O purposes. It has an opcode like the other instructions, a syntax
that is vaguelly similar, the B, X, I, Q and D fields, but it is translated and
interpreted differently from the usual Felix instructions. The syntax is:

HOST[,q] hostop[,arg[,b]]

Where: q is a general register (0..15), b is a base register (0..7, or 8..15,
meaning the same registers, 0/8 is always 0). op and arg are 8-bit quantities
and are stored in the D field of the instruction, op being the most significant
and arg being the less. The I and X field are currently ignored.

This is equivallent to a function call of the hostop function, with up to
three arguments: arg, b and q. b and q could represent the register numbers
or the values inside the registers, depending on the hostop. The result of the
operation is returned in q.

There is an informal industry standard on such calls, named ‘semihosting’,
to which we map our call frame. The proposed calls in table 6 are based
on https://interrupt.memfault.com/blog/arm-semihosting, with some
additions. At the start, three file are open: 0, standard in–connected to the
card reader at the line following the .RUN control card, 1, standard out,
connected to the simulator standard output considered to be the system line
printer and 2, standard error, a console/secondary printer connected to the
simulator standard error.

5 The Felix-CC16 job simulator

Because the addressing modes, especially the immediate direct ones, favor
addressing the first 64Kb of directably addressable memory, the first version
of the simulator will focus on a machine with 64Kb. This should allow many
of the Assiris code examples from the literature to run.

The assembler, system directives, control cards and macros that were
usual for Assiris application users are implemented outside the simulated
machine, but in the same executable as the simulator. Thus, we simulate a
card reader for a ’jobfile’, a sequence of JOBs on the standard input and the
printer output on the standard output.

22

https://interrupt.memfault.com/blog/arm-semihosting

Table 6: Proposed semihosting calls

--

name hostop arg b q meaning, res impl

--

(from semihosting specification, adapted to felix)

OPEN 01 filenr name opt open file s/e CC1M

ISTTY 09 filenr check if tty, ?

WRITE 05 filenr buffer len write block to file s/e CC16

READ 06 filenr buffer len read block s/e CC16

CLOSE 02 filenr close file s/e CC1M

FLEN 0C filenr length of file len CC1M

SEEK 0A filenr pos seek in file s/e CC1M

TMPNAM 0D n/i ?

REMOVE 0E n/i ?

RENAME 0F n/i ?

WRITEC 03 filenr char write char to file s/e CC16

WRITE0 04 filenr str 0term char to file s/e CC16

READC 07 filenr read char ch CC16

CLOCK 10 ada clock in seconds sec CC16

ELAPSED 30 x 10**x ns since start nr CC16

TICKFREQ 31 ?

TIME 11 ?

SYSTEM 12 call system command? CX32

(newly added for the felix/assiris simulator)

EXIT 60 exitcod err exit with code --- CC16

PRINTF 68 format arg dec/hex/char/float s/e CC16

ALLOC 70 r/w addr len alloc ram in 4G space s/e CX32

MMAP 78 r/w addr name alloc ram read file len CX32

SAVE 79 addr len save mmap file s/e CX32

SETLEN 7A addr len set new len to mmap fi s/e CX32

DUMP 80 filenr addr len dump memory and regs s/e CC16

--

23

The purpose is to simulate the experience a user would typically have had
with using the Felix computer in Assiris, without using the actual system
tools, that are no longer available.

5.1 Outline of the v1.0 version

This is a sketch of ideas about how the future 1.0 version would be, the
purpose being the simulation of the user experience with assiris programming
of the felix.

1. most instructions would be implemented, possibly with the following
exceptions:

(a) character string and decimal instructions, some system instruc-
tions, may not be implemented;

(b) the floating point will be IEEE-754 floating point rather than the
native one (with one byte exponent for both short and long) but
most programmers, most of the time, would not feel any difference;

2. everything will be in Ascii; EBCDIC is a feature of the operating sys-
tem, not the processor (except possibly the PACK/UNPK instructions
and EDIT) and as there is no EBCDIC programs or data in existence,
the experience of the programmer is mostly the same;

3. the operating system interface will be a newly added, simulated, trap
instruction into the simulator, posibly named HOST, that will use the
modern operating system in which it runs (Linux, currently) to simulate
some system functions; initially, the only system functions are printing
and exiting from the program; further functions may be added, perhaps
following the ‘semihosting’ API.

4. macros, directives and control cards similar to those corresponding to
the Sirius/SGF commands would be added; they will compile (macros)
into HOST instructions or act on the setup created by the HOST;

5. a minimal set of system resources, such as possibly a source library and
sequential files, will be simulated as directories on the hosting operating
system and will be translated by the simulator;

24

6. some control cards, directives and macros for configuration, signaling,
debugging etc, specific to the different environment of the host system;

7. minimum HOST operations and macros to allocate larger memory seg-
ments in the 24bit address space of the Felix or, perhaps, in the 32 ad-
dress space allowed by its base registers, with macros–such as loading
32 bits immediately with a single instruction–that make its use con-
fortable; an MMAP instruction in the HOST could help also; this fea-
ture could be reserved for a future configuration, perhaps named Felix-
CX32 (from the eXtended nature of the machine and 32-bit addresses–
although the only extension is the fact that the artificial limit to 24 bit
addresses is removed);

8. documentation, in a future version of this document, of the exact syn-
taxes and semantics of the instructions, macros, directives and control
cards, as used in this simulator–that are intented to be the same as in
the real machines, mostly, but may differ and are how they are.

6 Specific features and peculiarities of each

release

6.1 v0.2.0, CC16 only

Purpose of this version: finalize addressing modes, more instructions, docu-
mentation (this document).

New developments:

• PRINT completed with ’f’ and ’g’ for float and long float and ’x’ for
hexadecimal printing of the contents of a register;

• DATA, TEXT and TEXTC directives implemented;

• BOUND instead of ALIGN (ALIGN also accepted);

• ‘*’ as the current assembly location;

• the addressing modes, and their assembly syntax, established as in
table 5;

25

• 64 bit operations implemented;

• floating point, short and long, implemented;

6.1.1 readme/installation

FELIX an approximate emulator for Felix-C-256 assembly (ASSIRIS) jobs

Copyright (c) 2023 Alexandru Dan Corlan, MD, PhD

This is release V0.2.0, December 1, 2023

It is part of the RASSIRIS project, to simulate Felix/Assiris-like computers

http://dan.corlan.net/software/emulators/felix-assiris/

Detailed documentation is at:

http://dan.corlan.net/software/emulators/felix-assiris/rassiris.pdf

and is also supplied in the distribution.

This code is released under the GNU General Public Licence version 2

INSTALLATION.

On LINUX. Install gnat, the GNU Ada Translator. On debian: apt install gnat

Untar the distribution: tar xvzf felix-assiris-v0.2.0

Change to the directory: cd felix-assiris-v0.2.0

Say: make

The resulting binary, felix, can be run locally or copied to /usr/local/bin

for general availability on your system.

RUNNING.

The simulator is a linux executable, felix, that takes a jobfile on

stdin and prints on stdout. Try: ./felix <hello_world.assiris

for an example.

6.1.2 The help page

With the command (job):

echo ". SAY ’HELP’" | ./felix

the following will be obtained:

26

**

*** *** FELIX/ASSIRIS VIRTUAL PROCESSOR HELP *** ***

**

================

= GENERALITIES =

================

FELIX V0.2.0., a felix/siris-2/assiris emulator, part of rassiris project.

see http://dan.corlan.net/software/emulators/felix-assiris/ for details.

This version only has 64K of memory and only knows some of the instructions:

AD4 AD4I AD8 ADF8 ADF4 BRU BCF BCT BAL CP1I CP1 CP2 CP4 CP8 DC4 DV2 DVU2 DV4

DV8 DVF8 DVF4 EO2 EO4 EX2 EX4 IC2 IC4 LDC2 LDC4 LD1I LD2I LD1 LDL2 LDH2 LD4

LD8 LDM LD4I MG2 MG4 MP2 MPU2 MP4 MP8 MPF8 MPF4 NF4 ST1 ST4 ST8 STH2 STM

SB4I SB4 SB8 SBF8 SBF4

to which we added a couple more (see below): PRINT HALT

All addressing modes are implemented in this version, direct-nonindexed, indirect-nonindexed,

direct-indexed and indirect-indexed.

The indirect addressing mode works for exactly one indirection.

=================

= CONTROL CARDS =

=================

The following cards (LIST and CONF) can appear anywhere in the input stream:

. LIST opt{,opt}* where opt can be:

’HELP’ -- include this help text in the listing

’ABOUT’ -- introduction to the FELIX/ASSIRIS system

’SYMS’ -- the symbols table

’LINKS’ -- the linkings performed by the link editor up to that point

’DUMP’ -- ‘VIDAGE MEMOIRE’ at that point

MSG:’x’ -- display the message at that point

. CONF opt{,opt}* -- currently is ignored.

The following cards can only appear in a specifc sequence.

The sequence is: JOB, COMPILE, LINK, RUN, EOJ; then, you may repeat.

COMPILE must be follwed by ASSIRIS (. COMPILE ASSIRIS)

RUN will admit one option, KINS:n where n is the number of thousands of

instructions to run. Without it, the simulator only runs 500 instructions

then stops (as was necessary in early tests).

Otherwise, you may add any options to the cards, but they are currently ignored.

==============

= DIRECTIVES =

27

==============

Directives are cards that can occur only between ’. COMPILE ASSIRIS’ and ’END’

The directives: ORG, EQU, DS, DB, ALIGN, work as expected. EQU defines a symbol.

ORG changes the address (that must be its argument) where the assembler generates code

DATA,x,y datum{,datum}* stores each datum in succesive locations of x bytes each and

aligned at y; by default, x and y are 4. Each datum has the syntax mentioned at DB

below, to which FS:’<float>’ and FL:’<float>’ are added and, of course, the

size of the objects specified can be of the size x.

DS is followed by a ’-delimited string, the ASCII characters of which it puts into memory

in succesive byte locations.

TEXT is like DC.

TEXTC is like TEXT, but the string is preceded by a byte containing its length.

DB is followed by a sequence of byte-sized numbers (0..255),

Comma separated, that ar put into memory in sequence.

the number can be: [-]ddd, decimal numbers; X’xx’ hexadecimal, C’c’ characters.

ALIGN and BOUND (synonymous). Before assemblying machine code,

the assembly address must be aligned to 4 bytes.

After DSs and DBs, always use ALIGN 4, if code follows.

ALIGN take an optional argument--at what pace to align, in bytes. The default is 4.

END X must include this X which is the address, usually a label, where RUN will start execution.

CSECT is ignored.

Label expressions are not implemented, you can’t say ’BRU ADDR+8’ or something

====================

= NEW INSTRUCTIONS =

====================

HALT will finish running

PRINT,r will print the LSB of register r as an ascii character on stdout

PRINT,r C’d’ will print the register r as a decimal on stdout

PRINT,r C’xy’ will print the two ASCII characters x and y on stdout

6.1.3 Tests

The test files from the V0.1.1 should still work, hello world (subsection 6.2.3)
and bogomips (subsection 6.2.4).

The following tests were added:

6.1.4 addrtest02.asr

Check the one below with section 4.4.

28

. JOB ADDRTEST,PN:DACORLAN

. COMPILE ASSIRIS

CSECT

ORG X’0504’

ALPHA DATA,4,4 X’100’,X’200’,X’300’,X’400’

ORG X’0100’

OMEGA DATA,4,4 X’0999’,X’0AAA’,X’0BBB’

L1 LD4I,3 ALPHA

PRINT,3 C’1.’

PRINT,3 C’3=’

PRINT,3 C’x’

PRINT,3 C’\n’

L2 LD4I,3 *ALPHA

PRINT,3 C’2.’

PRINT,3 C’3=’

PRINT,3 C’x’

PRINT,3 C’\n’

L3 LD4,3 ALPHA

PRINT,3 C’3.’

PRINT,3 C’3=’

PRINT,3 C’x’

PRINT,3 C’\n’

L4 LD4,3 *ALPHA

PRINT,3 C’4.’

PRINT,3 C’3=’

PRINT,3 C’x’

PRINT,3 C’\n’

L5 LD4I,2 8

PRINT,3 C’5.’

PRINT,3 C’2=’

PRINT,2 C’x’

PRINT,3 C’\n’

L6 LD4 ALPHA,2

PRINT,3 C’6.’

PRINT,3 C’0=’

29

PRINT,0 C’x’

PRINT,3 C’\n’

L7 LD4 *ALPHA,2

PRINT,3 C’7.’

PRINT,3 C’0=’

PRINT,0 C’x’

PRINT,3 C’\n’

L8 LD4I *ALPHA,2

PRINT,3 C’8.’

PRINT,3 C’0=’

PRINT,0 C’x’

PRINT,3 C’\n’

L8S ST4,0 12

PRINT,3 C’8S’

PRINT,3 C’.3’

PRINT,3 C’==’

PRINT,3 C’x’

PRINT,3 C’\n’

L9 LD4,8 12

PRINT,3 C’9.’

PRINT,3 C’8=’

PRINT,8 C’x’

PRINT,3 C’\n’

L10 LD4,8 *12

PRINT,3 C’10’

PRINT,3 C’.8’

PRINT,3 C’==’

PRINT,8 C’x’

HALT

END L1

. LINK

. RUN

. EOJ

6.1.5 addrtest.asr

. JOB ADDRTEST,PN:DACORLAN

30

. COMPILE ASSIRIS

CSECT

STR DS ’Hello World’

DB 10,0

ALIGN

STARSTR DB 0,0,0,0

ALIGN

RUNOW LD8,6 STR

AD4I,6 3

ST8,6 STR

LD4I,5 STR

ST4,5 STARSTR

*HELLOW LD4I,9 STR

HELLOW LD4,9 STARSTR

DLOOP LD1,4 *36

CP1I,4 0

BCT,8 NOPRINT

PRINT,4

NOPRINT AD4I,9 1

CP1I,4 0

BCF,8 DLOOP

PRINT,3 C’..’

PRINT,3 C’GA’

PRINT,3 C’TA’

HALT

END RUNOW

. LINK

. RUN

* LIST MSG:’salut’,’SYMS’,’LINKS’,’DUMP’

. EOJ

6.1.6 datatest01.asr

. JOB DATATEST,PN:DACORLAN

. COMPILE ASSIRIS

CSECT

31

ORG X’0504’

ALPHA DATA,4,4 FS’22.4e1’,FS’11.2e1’

L1 LD4I,2 4

LD4 ALPHA,2

ADF4,0 ALPHA

PRINT,0 C’f’

HALT

END L1

. LINK

. RUN

. EOJ

6.1.7 hello02.asr

. JOB HELLOWRL

. COMPILE ASSIRIS

CSECT

STR DS ’Hello World’

DB 10,0

ALIGN

HELLOW LD4I,9 STR

DLOOP LD1,4 B1.0

CP1I,4 0

BCT,8 NOPRINT

PRINT,4

NOPRINT AD4I,9 1

CP1I,4 0

BCF,8 DLOOP

PRINT,3 C’..’

PRINT,3 C’GA’

PRINT,3 C’TA’

HALT

END HELLOW

. LINK

. RUN

. LIST MSG:’salut’,’SYMS’,’LINKS’,’DUMP’

32

. EOJ

6.2 v0.1.1, CC16 only

In this subsection we describe a first working release (0.1.1) of the simula-
tor and assembler that is mostly, but not entirely compatible with the 1.0
specification above, and only implements a few instructions and addressing
modes. The text below repeats to some extent the things explained above.
The examples may or may not work in further versions. However, the text
characterises the first release and might be useful to somebody.

*

* *

Based on [1], we try to implement a simulator, not of the Felix (in the
SIMH style), but of one single threaded Felix job that must consist of a
restriction to the most commonly used instructions and of the ASSIRIS as-
sembler, together with essential control instructions and macros. The job
is described by an Ascii file (Felix used EBCDIC) on the standard input,
resulting in a printout on the standard output. The input code is assembled
in machine code that is probably the same with the Felix one, and executed
through interpretation.

The simulator is currently only for Linux. It is written in Ada and pub-
lished under GPLv2. (Incidently, one of the designers of the SIRIS-3 operat-
ing system, Ichbiah, later went on to become the chief designer of the Ada-83
language.) It is a simple program, using only the standard libraries, it should
be easy to port on other systems.

6.2.1 How to install

You must install the GNU NYU Ada Translator (gnat), the Ada component
of the gcc compiler. On debian derived Linuxes use:

apt install gnat

Then, you unpack the distribution zip or tar.gz in a directory and give
the command ‘make’.

To test a job say:

33

./felix <hello_world.assiris

. . . or ./felix -h or felix anything to get an ’about’ and then a ’help’.
For more, you should really ’use the force’ (read the source).

6.2.2 The output of the ”. LIST ’HELP’ ” control card in version
0.1.1

The help is reproduced below:

GENERALITIES

This version only has 64K of memory and only knows some of the instructions:

AD4I BRU BCF BCT BAL CP1I CP1 CP2 CP4 EO2 EO4 EX2 EX4 LDC2 LDC4 LD1I LD2I LD1

LDL2 LDH2 LD4 LDM LD4I MG2 MG4 ST1 ST4 STH2 STM SB4I SB4

to which we added a couple more (see below): PRINT HALT

Only the direct and indirect addressing modes are implemented in this version.

The indirect addressing mode works for exactly one indirection.

CONTROL CARDS

The following cards (LIST and CONF) can appear anywhere in the input stream:

. LIST opt{,opt}* where opt can be:

’HELP’ -- include this help text in the listing

’ABOUT’ -- introduction to the FELIX/ASSIRIS system

’SYMS’ -- the symbols table

’LINKS’ -- the linkings performed by the link editor up to that point

’DUMP’ -- ‘VIDAGE MEMOIRE’ at that point

MSG:’x’ -- display the message at that point

. CONF opt{,opt}* -- currently is ignored, it will provide for configuration of the system

The following cards can only appear in a specifc sequence.

The sequence is: JOB, COMPILE, LINK, RUN, EOJ; then, you may repeat.

COMPILE must be follwed by ASSIRIS (. COMPILE ASSIRIS)

RUN will admit one option, KINS:n where n is the number of thousands of

instructions to run. Without it, the simulator only runs 500 instructions

then stops (as was necessary in early tests).

Otherwise, you may add any options to the cards, but they are currently ignored.

34

DIRECTIVES

Directives are cards that can occur only between ’. COMPILE ASSIRIS’ and ’END’

The directives: ORG, EQU, DS, DB, ALIGN, work as expected. EQU defines a symbol.

ORG changes the address (that must be its argument) where the assembler generates code

DS is followed by a ’-delimited string, the ASCII characters of which it puts into memory

in succesive locations

DB is followed by a sequence of byte-sized numbers (0..255), comma separated, that ar put into memory in sequence.

the number can be: [-]ddd, decimal numbers; X’xx’ hexadecimal, C’c’ characters.

ALIGN is essential. Before assemblying machine code, the assembly address must be aligned to 4 bytes.

After DSs and DBs, always use ALIGN to synchronise the address to a 4-byte alignment, if code follows.

ALIGN take an optional argument about at what pace to align, in bytes. The default is 4.

END X must include this X which is the address, usually a label, where RUN will start execution.

CSECT is ignored.

Label expressions are not implemented, you can’t say ’BRU ADDR+8’ or something

NEW INSTRUCTIONS

HALT will finish running

PRINT,r will print the LSB of register r as an ascii character on stdout

PRINT,r C’d’ will print the register r as a decimal on stdout

PRINT,r C’xy’ will print the two ASCII characters x and y on stdout

Two test programs that work in V0.1.1 (and may not work exactly in
future 0.x versions).

6.2.3 Hello world

. JOB HELLOWRL

. COMPILE ASSIRIS

CSECT

STR DS ’Hello World’

DB 10,0

ALIGN

HELLOW LD4I,9 STR

DLOOP LD1,4 *9,0

35

CP1I,4 0

BCT,8 NOPRINT

PRINT,4

NOPRINT AD4I,9 1

CP1I,4 0

BCF,8 DLOOP

PRINT,3 C’..’

PRINT,3 C’GA’

PRINT,3 C’TA’

HALT

END HELLOW

. LINK

. RUN

. LIST MSG:’salut’,’SYMS’,’LINKS’,’DUMP’

. EOJ

6.2.4 Bogomips

. JOB BOGOMIPS

. COMPILE ASSIRIS

CSECT

TESTDEC LD4I,3 1000

LD1I,4 10

DLOOP LD4I,5 2500

PRINT,2 C’..’

* PRINT,3 C’d’

ILOOP SB4I,5 1

BCF,8 ILOOP

SB4I,3 1

BCF,8 DLOOP

PRINT,3 C’..’

PRINT,3 C’GA’

PRINT,3 C’TA’

HALT

END TESTDEC

. RUN KINS:120000

. EOJ

36

References

[1] FELIX C 256–Structura si programarea calculatorului. Vasile Baltac,
Ion Căruţaşu, Petru Macareie, Corneliu Maşek, Victor Megheşan, Maria
Mocică, Lucia Popescu, Werner Schatz. Editura Tehnică, Bucureşti,
1974.

[2] Introducere ı̂n sistemul de operare SIRIS. Horia Georgescu, Petre
Preoteasa. Ed. Albatros, 1978.

[3] Assiris, SGF şi implicaţiile lor ı̂n Fortran şi Cobol. Minerva Bocşa. Ed-
itura Facla, Timişoara, 1986.

[4] Limbaje de programare, Assiris Manual pentru licee de matematică-
fizică, profilul matematică-informatică, clasa a XII-a. Mihai Jitaru,
Alexandru Teodorescu. Editura didactică şi pedagogică, Bucureşti 1978.

[5] Memento (principalele instrucţiuni, formate şi comenzi) Felix-C-256,
scanat la: https://cronica-it.github.io/arhiva/assets/1975/

babesbalyai-memento-felix-c-256.pdf

[6] Elemente ale sistemului de operare Siris 3. Ştefan Măruşter. Editura
Facla, Timişoara, 1980.

[7] Programarea ı̂n limbaje de asamblare Assiris. E. Munteanu, V. Corstea,
M. Mitrov, Ed. Tehnică, Bucureşti, 1976.

37

https://cronica-it.github.io/arhiva/assets/1975/babesbalyai-memento-felix-c-256.pdf
https://cronica-it.github.io/arhiva/assets/1975/babesbalyai-memento-felix-c-256.pdf

	Introduction
	The Felix culture
	Importance of the simulator project
	Aim of the project, what we try to preserve
	Why learn Assiris and use the Felix simulator
	History of Assiris and Felix-C computers

	About this project
	History of this project
	Roadmap

	Known differences between systems
	Differences between Felix and Sigma computers
	Differences between RASSIRIS simulators and the Felix-C-256
	Comparison of RASSIRIS simulators with SimH and QEMU

	The input language accepted by RASIRRIS
	Types of input lines (cards)
	General structure of the input file
	Machine code instructions
	Address calculation

	Examples of addressing modes
	The HOST instruction

	The Felix-CC16 job simulator
	Outline of the v1.0 version

	Specific features and peculiarities of each release
	v0.2.0, CC16 only
	readme/installation
	The help page
	Tests
	addrtest02.asr
	addrtest.asr
	datatest01.asr
	hello02.asr

	v0.1.1, CC16 only
	How to install
	The output of the ". LIST 'HELP' " control card in version 0.1.1
	Hello world
	Bogomips

	References

