
EFFICIENCY OF FORTRAN AND COMMON LISP

ALEXANDRU DAN CORLAN

Misconceptions persist regarding the execution speed of lisp code com-
pared to classic compiled languages such as FORTRAN.

Due to the dynamic nature of Lisp, in early implementations, when com-
pilers using proper type declarations were not yet deployed, a reputation of
“slowness” emerged for Lisp.

Around 40 years ago, very efficient compilers were developed that compile
code as fast as FORTRAN, if the program is properly specified, that is, if the
types of variables and functions are restricted to integers, floats, characters
and arrays of them.

Table 1. Efficiency of compiled code via f2cl translation,
followed by sbcl Common Lisp compilation, vs direct compi-
lation of FORTRAN programs with gfortran on two recent
microprocessors.

processor version tespol exec (ms) compile+run (ms)

sbcl gfortran sbcl gfortran sbcl gfortran

Ryzen 5 5600G 2.1.11 11.4.0 120 107 137 161

Xeon E3-1230V2 1.1.14 4.8.4 208 193 245 245

Lisp can be used as a dynamic language, that allocates and frees lots of
memory while interpreting constructs that are known only at runtime.

However, this is just an optional feature. When and where this type of
dynamic expressivity is not necessary, ubiquitous Common Lisp implemen-
tations, such as sbcl, compile properly written Lisp code with exactly the
same efficiency as FORTRAN compilers.

Here, we reiterate the argument and also present a simple method through
which any FORTRAN program can be easily tested against the Common
Lisp equivalent, using the well known [2] developed by Broughan and Will-
cock about 30 years ago.

1. Results

About 20 years ago, we evaluated the same algorithm compiled with CMU
Common Lisp (cmucl) and FORTRAN and the result was only about 50%

Date: January 3, 2026.

1

2 ALEXANDRU DAN CORLAN

faster for FORTRAN [1]. In the meantime, SBCL, the succesor of cmucl, im-
proved and despite simultaneous improvements in the FORTRAN compiler,
this difference has been reduced to less than 10%.

The results are in table 1. One of the timings is for running the tested
function, tespol, in lisp, and respectively for loading and running the gfor-
tran generated binary. The other is for the whole process, loading the lisp
environment, converting the program from FORTRAN, compiling and run-
ning it and, respectively compiling the program with gfortran and running
it. For some unexplored reason, the whole FORTRAN process is somewhat
slower.

An important point is that the common-lisp execution of tespol does not
cons anything (as reported by the internal ‘time’ function), sa no garbage
collection debt is created.

2. Methods

Unlike in the previous experiment [1], we did not write the Common Lisp
code by hand. Instead, we start from the same FORTRAN source code,
that is either compiled with gfortran or translated to lisp through f2cl [2]
and compiled and run with sbcl.

To streamline this, process we built an executable, named bablisp, that
combines sbcl, the f2cl translator and our previously published shelisp in-
terface [3]. This is done by running the script shown in listing 1.

The embedding of FORTRAN programs in Common Lisp is shown in
listing 2. f77 is the function previously defined in bablisp. The #[...]# is
a reader macro defined in shelisp that allows pieces of text to be given as
strings without escapes for quotes and other characters. At read time, the
text between these delimiters is converted into a simple string that is then
provided as a first argument to function f77. f77 invokes f2cl to convert this
string, as FORTRAN source, into the lisp function tespol, which is compiled.

Listing 3 shows the result of the compilation, the Common Lisp tespol
function.

3. Run the test on another machine

The associated archive, clfortest.tgz, contains the script babltest.runme.
This archive has a md5sum of c3180d7f001842b66eefcf05823974c2.

You must have gfortran, unzip and sbcl installed. On a debian based
system, you can install them with a command like:

apt install gfortran sbcl unzip

The f2cl distribution is included in clfortest. Make a directory, cd into it,
untar the archive with:

tar xvzf clfortest.tgz

then run: ./babltest.runme
The first set of timings is for the function tespol, the next is for the overall

compilation, loading and running.

EFFICIENCY OF FORTRAN AND COMMON LISP 3

Of course, the tespol benchmark can be replaced with any other FOR-
TRAN program.

4. Conclusions

The difference in efficiency between native fortran compilers and, at least,
the compiler from sbcl, have narrowed to less than 10% in the last couple of
decades.

Transpiling other languages, both with static and dynamic data struc-
tures, into Common Lisp is an increasingly appealing approach to increasing
speed and reducing power consumption of computation.

References

[1] Programming language benchmarks. Alexandru Dan Corlan et al, 2002. http://dan.
corlan.net/bench.html

[2] FORTRAN to Lisp Translation using f2cl K.A. Broughan, D.M.K. Willcock, Soft-
ware Practice and Experience, 26(10), p. 1127–1139, 1996 https://doi.org/10.1002/

(SICI)1097-024X(199610)26:10<1127::AID-SPE50>3.0.CO;2-Q

[3] SHELISP: Unix shell commands from Common Lisp. Alexandru Dan Corlan 2006.
http://dan.corlan.net/shelisp/

http://dan.corlan.net/bench.html
http://dan.corlan.net/bench.html
https://doi.org/10.1002/(SICI)1097-024X(199610)26:10<1127::AID-SPE50>3.0.CO;2-Q
https://doi.org/10.1002/(SICI)1097-024X(199610)26:10<1127::AID-SPE50>3.0.CO;2-Q
http://dan.corlan.net/shelisp/

4 ALEXANDRU DAN CORLAN

Listing 1. bablispgen, a simple script that loads shelisp v3.2, the
f2cl translator, defines a simpler compilation function (f77) and
saves everything as an executable named bablisp. The executable
has about 47MB and uses libm, libc, libz and libpthreads.

#! /usr/bin/sbcl --script

;;;; BABel LISP. a framework to use other syntaxes in lisp

;;;; Copyright (c) 2022 Alexandru Dan Corlan MD PhD

;;;;

;;;; This program loads and compiles other programs, then generates

;;;; a standalone executable as an enhanced sbcl.

;;;;

;;;; v0.1. January 8, 2022. Using shelisp and f2cl to embed FORTRAN in lisp

(load "shelisp32.lisp")

(load "f2cl-master/src/f2cl0.l")

(load "f2cl-master/src/f2cl1.l")

(load "f2cl-master/src/f2cl2.l")

(load "f2cl-master/src/f2cl3.l")

(load "f2cl-master/src/f2cl4.l")

(load "f2cl-master/src/f2cl5.l")

(load "f2cl-master/src/f2cl6.l")

(load "f2cl-master/src/f2cl7.l")

(load "f2cl-master/src/f2cl8.l")

(load "f2cl-master/src/macros.l")

(defun f77 (source &key (tempfile #P"temp.f77")

(templisp #P"temp.lisp")

(keep-temp-files nil)

(declare-common nil))

(with-open-file (file tempfile :direction :output

:if-exists :overwrite

:if-does-not-exist :create)

(write-string source file)

)

(f2cl::f2cl tempfile :output-file templisp

:declare-common declare-common)

(load templisp)

(unless keep-temp-files

(delete-file tempfile)

(delete-file templisp)

)

)

(save-lisp-and-die "bablisp" :executable t :purify t)

EFFICIENCY OF FORTRAN AND COMMON LISP 5

Listing 2. The lisp program that runs the test.

#! ./bablisp --script

(f77 #[

program tespol

dimension pol(100)

real pol

integer i,j,n

real su,pu,mu

real x

n = 500000

x = 0.2

mu = 10.0

pu = 0.0

do i = 1,n

do j=1,100

mu = (mu + 2.0) / 2.0

pol(j) = mu

enddo

su = 0.0

do j=1,100

su = x * su + pol(j)

enddo

pu = pu + su

enddo

write (*,*) pu

end

]# :keep-temp-files t)

(time (tespol))

6 ALEXANDRU DAN CORLAN

Listing 3. The bablispgen script that combines the standard Com-
mon Lisp environment with f2cl and shelisp to produce the bablisp
executable.

;;; Compiled by f2cl version:

;;; ("f2cl1.l,v 95098eb54f13 2013/04/01 00:45:16 toy $"

;;; "f2cl2.l,v 95098eb54f13 2013/04/01 00:45:16 toy $"

;;; "f2cl3.l,v 96616d88fb7e 2008/02/22 22:19:34 rtoy $"

;;; "f2cl4.l,v 96616d88fb7e 2008/02/22 22:19:34 rtoy $"

;;; "f2cl5.l,v 95098eb54f13 2013/04/01 00:45:16 toy $"

;;; "f2cl6.l,v 1d5cbacbb977 2008/08/24 00:56:27 rtoy $"

;;; "macros.l,v 1409c1352feb 2013/03/24 20:44:50 toy $")

;;; Using Lisp SBCL 1.1.14.debian

;;;

;;; Options: ((:prune-labels nil) (:auto-save t) (:relaxed-array-decls t)

;;; (:coerce-assigns :as-needed) (:array-type ’:array)

;;; (:array-slicing t) (:declare-common nil)

;;; (:float-format single-float))

(in-package :common-lisp-user)

(defun tespol ()

(prog ((x 0.0) (su 0.0) (pu 0.0) (mu 0.0) (i 0) (j 0) (n 0)

(pol (make-array 100 :element-type ’single-float)))

(declare (type (array single-float (100)) pol)

(type (f2cl-lib:integer4) n j i)

(type (single-float) mu pu su x))

(setf n 500000)

(setf x 0.2)

(setf mu 10.0)

(setf pu 0.0)

(f2cl-lib:fdo (i 1 (f2cl-lib:int-add i 1))

((> i n) nil)

(tagbody

(f2cl-lib:fdo (j 1 (f2cl-lib:int-add j 1))

((> j 100) nil)

(tagbody

(setf mu (/ (+ mu 2.0) 2.0))

(setf (f2cl-lib:fref pol (j) ((1 100))) mu)

label100001))

(setf su 0.0)

(f2cl-lib:fdo (j 1 (f2cl-lib:int-add j 1))

((> j 100) nil)

(tagbody

EFFICIENCY OF FORTRAN AND COMMON LISP 7

(setf su (+ (* x su) (f2cl-lib:fref pol (j) ((1 100)))))

label100002))

(setf pu (+ pu su))

label100000))

(f2cl-lib:fformat t :list-directed pu)

end_label

(return nil)))

(in-package #-gcl #:cl-user #+gcl "CL-USER")

#+#.(cl:if (cl:find-package ’#:f2cl) ’(and) ’(or))

(eval-when (:load-toplevel :compile-toplevel :execute)

(setf (gethash ’fortran-to-lisp::tespol

fortran-to-lisp::*f2cl-function-info*)

(fortran-to-lisp::make-f2cl-finfo :arg-types ’nil :return-values ’nil

:calls ’nil)))

	1. Results
	2. Methods
	3. Run the test on another machine
	4. Conclusions
	References
	Listing 1. bablispgen, a simple script that loads shelisp v3.2, the f2cl translator, defines a simpler compilation function (f77) and saves everything as an executable named bablisp. The executable has about 47MB and uses libm, libc, libz and libpthreads.
	Listing 2. The lisp program that runs the test.
	Listing 3. The bablispgen script that combines the standard Common Lisp environment with f2cl and shelisp to produce the bablisp executable.

